25.6V 100Ah Lifepo4 Battery Assembly to Power an 80lb Thrust Trolling Motor

by QHlifepo4battery in Workshop > Solar

296 Views, 1 Favorites, 0 Comments

25.6V 100Ah Lifepo4 Battery Assembly to Power an 80lb Thrust Trolling Motor

24V 100ah lifepo4 battery.png

When selecting the right trolling motor for your new boat or boat upgrade, thrust is one of the most critical specs to consider to ensure that you can propel your boat properly. The proper thrust levels are typically calculated based on your boat’s weight and length. Electric trolling motors can help us avoid spooking fish.

Thrust is measured in pounds (lbs) and refers to how powerful the trolling motor is. Usually, a 68-80 lbs thrust trolling motor needs 24 volts LiFePO4 battery or two 12V batteries. Are you interested in building your LiFePO4 battery? Here is the full process of battery assembling in the following post!

Supplies

1.1-fiber type.jpg
2034-01.jpg
kSupply-cables-800x472.jpg

Material Used:

  • 3.2V 100Ah LiFePO4 battery cells (8 pieces)
  • There are currently three common shapes of LiFePO4 batteries: cylindrical, prismatic, and pouch. Different shapes of batteries will have a certain impact on performance. At present, the most suitable battery DIY enthusiasts are the prismatic LiFePO4 batteries, which are very suitable for both performance and operational difficulty. We recommend you purchase the Grade A battery with a high quality and reliable warranty.
  • BMS (Battery Manage System, 1 piece)
  • Connectors (About 8 pieces)
  • Others: EVA cotton, screws, ribbon cables, plastic pipes, etc.

Tool Used:

  • Spot Welder
  • Spot Welding Pen
  • Soldering Iron
  • Wire Cutter
  • Wire Stripper
  • Multimeter


Install Signal Acquisition Wires in Sequence

1.png

The connecting piece has been connected to the battery cell by laser welding. Laser welding is a process used to join together metals or thermoplastics using a laser beam to form a weld.

Before we connect this group of battery cells, we should use the multimeter to check their voltage of them to ensure consistency. It is better if you have a testing device to check the internal resistance. Without testing the consistency, the battery pack may cause an accident.

Then we place them in order and fix them with fiber tape. (Made of hot melt adhesive and forms a stronger tape that is resistant to tears and has better temperature tolerance than regular tape.)

Cut the Signal Line to an Appropriate Length

2.png

Tidy up the messy lines, then cut them into an appropriate length.

Connect the Positive and Negative Wires With Connecting Pieces

3.png

Soldering Signal Lines With Lead-Free Solder

4.png

Generally, leaded solder is composed of tin and lead. The advantages of using leaded solder include: being easier to bring to working temperature, being shock resistant, and having fewer internal flaws in the structure after being cooled. However, lead material is harmful to the body as it’s readily absorbed. We’d better choose lead-free solder to protect our health and environment.

Put Battery Pack Into the Shell, and Fill EVA Cotton

5.png

EVA cotton can be shockproof, fireproof, and insulated, which can protect the LiFePO4 battery cells well.

Secure BMS With Thermally Conductive Tape

6.png

Thermally conductive tapes are designed to provide preferential heat transfer between heat-generating electronic components and cooling devices such as fans, heat sinks, or heat spreaders. They are also used for the thermal management of high-powered LED’s which can run at high temperatures, thus increasing the efficiency and reliability of the system.

Connect the B- of BMS to Negative of the Battery Pack

7.png

A BMS is one of the most important elements in a LiFePO4 battery, like the brain of the battery pack. It calculates the State of Charge (the amount of energy remaining in the battery) by tracking how much energy goes in and out of the battery pack and by monitoring cell voltages, which can prevent the battery pack from overcharging, over-discharging, and balancing all the cells voltage equally.


There are two main sets of wires we need to install, the thick wires and the thin wires. The thick wires are your charging/discharging wires and the thin wires are your balance wires. Not every BMS is the same, but most are similar. Your BMS will likely have 3 thick wires or 3 pads to solder on your own heavy gauge wires. These are the B-, P-, and C- wires (or pads for adding wires). We usually start with the B- wire. We can connect the B- of BMS to the negative pole of the battery pack.

Connect the Positive Power Line

8.png

Connect the Positive and Negative Power Line to the Cap

9.png

Check the Signal Lines in Correct Order

10.png

The wrong sequence may cause BMS to burn out.

Plug Signal Acquisition Wires’ Port Into Interface

11.png

Test the Voltage of the Battery Pack

12.png

In this step, we can use a multimeter to check the voltage of the whole battery pack. Attach the multimeter probes to the positive and negative battery terminals. Then we can check the voltage on the screen. The multimeter’s red probe must be connected to the positive terminal, while the black probe must be connected to the negative one.


A fully-charged battery must indicate a slightly higher voltage than the voltage listed on the battery. For instance, a 24 volts battery will indicate about 25.6 volts when it is fully charged.

Charging Test

13.png

In this step, we can use a multimeter to check the voltage of the whole battery pack. Attach the multimeter probes to the positive and negative battery terminals. Then we can check the voltage on the screen. The multimeter’s red probe must be connected to the positive terminal, while the black probe must be connected to the negative one.


A fully-charged battery must indicate a slightly higher voltage than the voltage listed on the battery. For instance, a 24 volts battery will indicate about 25.6 volts when it is fully charged.

Discharging Test

14.png

The discharging test of the battery is very helpful to the battery cycle life and discharge performance evaluation. We can use a professional device(Such as a Programmable DC Electronic Load) to check whether the battery works well or not during the discharging process, which can protect our battery and devices for further daily use.

When testing, there are three factors we need to pay attention to the port voltage of the battery, the resistance of the wire between the battery and the electronic load, and the temperature of the battery.